ISOLATION AND STRUCTURE DETERMINATION OF A NEW TRITERPENE-TRIOL FROM PACHYSANDRA TERMINALIS SIEB. ET ZUCC.

T. Kikuchi and M. Niwa

Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (Received in Japan 1 September 1971; received in UK for publication 9 September 1971)

In preceding papers¹, ²) we reported the structure elucidation of three friedelin-type triterpenes: pachysandiol-A (I), -B (IIa), and pachysonol (IIb)³, isolated from <u>Pachysandra_terminalis</u> SIEB. et ZUCC.. In succession, we recently isolated a new triol, which was now proved to have the structure IIIa.

The triol (IIIa) is an amorphous powder and was characterized as its triacetate (IIIb), $C_{36}H_{58}O_6$, mp 139-143°, $[\alpha]_D$ +7°(CHCl₃). Its IR spectrum⁴ showed an intense absorption at 1725 cm⁻¹ (OAc) and the NMR spectrum⁴ revealed signals at τ 4.80 (1H, t., J=9 Hz, CH-OAc), 5.17 (2H, br., 2xCH-OAc), 7.93, 7.95, 8.01 (each 3H, 3xAc), 9.20 (3H, d., J=6 Hz, <u>sec</u>-CH₃), and 8.75-9.08 (7x<u>tert</u>-CH₃). The NMR pattern is closely similar to those of I- and IIa-diacetate, suggesting that the triol (IIIa) is also a member of friedelin-type triterpene.

When IIIb was adsorbed on alumina for two days, partial hydrolysis took place to give a diacetate (IIIc), $C_{34}H_{56}O_5$, mp 254-255°, τ : 4.80 (1H, t., J=9 Hz, CH-OAc), 5.30 (1H, t., J=3 Hz, CH-OAc), 6.13 (1H, m., $W^{1/2}=6.5$ Hz, CH-OH), 7.95 and 8.01 (each 3H, 2×Ac). Chromic acid oxidation of the latter (IIIc) gave a ketone (IV), $C_{34}H_{54}O_5$, mp 205-208°, ν : 1735 (OAc) and 1720 cm⁻¹(ketone), τ : 4.82 (1H, t., J=9 Hz, CH-OAc) and 5.00 (1H, d., J=4 Hz, CH-OAc), which on treatment with KOH in boiling methanol gave rise to a diosphenol (V)¹⁾, $C_{30}H_{48}O_3$, mp 275-280°, ν (in KBr): 1662 and 1640 cm⁻¹, λ (in dioxane): 275 mµ(ϵ : 9475), τ (in pyridine-d₅): 8.04 (3H, s., C=C-CH₃). These observations indicated that the ketone (IV) has a partial structure -CO-CH(OAc)-CH(CH₃)-.

The above ketone (IV) was found to epimerize readily on alumina chromatography, yielding the corresponding epimer (VI), mp $208-210^{\circ}$, v: 1730(sh) and 1720 cm⁻¹, τ : 4.82 (1H, t., J=9 Hz, C<u>H</u>-OAc) and 5.03 (1H, d., J=12.5 Hz, C<u>H</u>-OAc).

Wolff-Kishner reduction (Nagata's modification⁵⁾) of both IV and VI resulted in the deacetoxylation and reduction of the carbonyl group to afford a saturated $alcohol^{6)}$, which on acetylation furnished a crystalline acetate (VII), $C_{32}H_{54}O_2$, mp 214.5-215.5°, τ : 4.80 (1H, t., J=9 Hz, CH-OAc) and 8.00 (3H, Ac). This compound was identified with a sample of VII, obtained by Wolff-Kishner reduction of pachysonol (IIb)²⁾ followed by acetylation.

Based on the foregoing spectroscopic and chemical evidence, the structure of the triol is assigned to the formula IIIa.

REFERENCES and FOOTNOTES

- 1) T. Kikuchi and T. Toyoda, Chem. Pharm. Bull. (Tokyo), 19, 753 (1971).
- 2) T. Kikuchi, M. Takayama, T. Toyoda, M. Arimoto, and M. Niwa, <u>Tetrahedron</u> <u>Letters</u>, <u>1971</u>, 1535.
- 3) The 16-hydroxyl group in IIa and IIb was recently determined to have the β configuration by X-ray analysis. The detail will be reported in near future.
- 4) IR and NMR spectra were taken in CHC1₃ and CDC1₃, respectively, unless otherwise stated.
- 5) W. Nagata and H. Itazaki, Chem. & Ind., 1964, 1194.
- 6) Huang-Minlon, <u>J. Am. Chem. Soc.</u>, <u>71</u>, 3301 (1949).